Lesson Plan for Course: B.Sc (G) Sem-III (DSC) Code: MTMGCOR03T Credit: 6

• Course Name: Real Analysis

• Course coordinator: Dr. Biswajit Sarkar

• Course Outcomes:

CO-1. Understand some properties of sets in \mathbb{R} .

CO-2. Able to solve problems related with real sequence.

CO-3. Learn about infinite series and their tests of convergence.

CO-4. To understand about Sequences and series of functions.

CO-5. Able to find radius of convergence of power series.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Finite and infinite sets, examples of countable	BS	03	Theoretical – 02
	and uncountable sets, Real line, bounded			Tutorial - 01
	sets, suprema and infima.			
	Real Sequence, Bounded sequence, Cauchy	SM	02	Theoretical – 01
	convergence criterion for sequences.			Tutorial - 01
	Infinite series. Cauchy convergence criterion	PD	03	Theoretical – 01
	for series. Positive term series, geometric series.			Tutorial - 02
Oct	Completeness property of R, Archimedean	BS	03	Theoretical -02
	property of R, intervals, Concept of cluster			Tutorial - 01
	points and statement of Bolzano-Weierstrass			
	theorem.	G) f	0.5	TT1 1 0.4
	Cauchy's theorem on limits, order	SM	06	Theoretical – 04
	preservation and squeeze theorem.			Tutorial - 02
	Monotone sequences and their convergence			
	(monotone convergence theorem without			
	proof).	PD	04	Theoretical – 02
	Comparison test, convergence of p-series,	PD	04	Tutorial - 02
	Root test, Ratio test.			Tutoriai - 02
M	1 st Internal A		02	T11 00
Nov	Power series.	BS	02	Theoretical – 02 Tutorial - 00
	Sequences and series of functions,	SM	02	Theoretical – 01
	· ·	SWI	02	Tutorial - 01
	Pointwise and uniform convergence.	PD	03	Theoretical – 02
	Infinite series: Alternating series, Leibnitz's	PD	03	Tutorial - 01
D	test (Tests of Convergence without proof).	DC	05	
Dec	Radius of convergence Power series.	BS	05	Theoretical – 04
	M took March Cold Cold	SM	06	Tutorial - 01 Theoretical - 04
	M_n -test, M-test. Statements of the results	SIVI	06	Tutorial - 02
	about uniform convergence and integrability			1 utorrar - 02
	and differentiability of functions.	PD	04	Theoretical – 03
	Infinite series: Definition and examples of	PD	04	Tutorial - 01
	absolute and conditional convergence. 2 nd Internal A	\		Tutoriai - 01
Jan	Revision 2 Internal A	Assessment BS	02	Theoretical – 06
Jan	Revision	SM	02	Tutorial - 00
		PD	02	i utoriai - 00
	End Semester			
	Assessment: Internal Assessment &		Total: 49	Theoretical – 34
	Assignment		Hrs	Tutorial - 15

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India, 2019.
- ➤ K.A. Ross, *Elementary Analysis- The Theory of Calculus Series-* Undergraduate Texts in Mathematics, Springer Verlag, 2003.
- E. Fischer, *Intermediate Real Analysis*, Springer Verlag, 1983.
- T.M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd., 2002.

Lesson Plan for Course: B.Sc (G) Sem-III (DSC) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Dr. Biswajit Sarkar
- Course Outcomes:
 - CO-1. Learn high-level programming languages.
 - CO-2. Able to construct flowchart.
 - CO-3. To know about some arithmetic operators and logical operators.
 - CO-4. Able to use for loop, while loop and do-while loop in C-programming.
 - CO-5. Capable to write programming for finding out maximum, minimum of a given set of numbers.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Unit-1: Basics of Computer Programming: Definition, Requirement of programming language, Machine language, high-level programming languages, machine code of a program: compilation process, Problem solving approaches: algorithm and flowchart.	SM	03	Theoretical-01 Tutorial-02
Oct	Unit-2: Fundamentals of Programming: Built in Data Types: int, float, double, char; Constants and Variables; first program: printf(), scanf(), compilation etc., keywords, Arithmetic operators: precedence and associativity, Assignment Statements: post & pre increment/decrement, logical operators: and, or, not.	SM	04	Theoretical-02 Tutorial-02
Nov	Unit-3: Statements: Relational operators, if-else statement.	SM	03	Theoretical-01 Tutorial-02
Dec	Unit-3: Statements: Iterative Statements: for loop, while loop and do-while loop; controlling loop execution: break and continue, nested loop. End Semester Examin	SM nation (By I	04 Department)	Theoretical-02 Tutorial-02
	Assessment: Assignment		Total: 14 Hrs	Theoretical-06 Tutorial-08

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015.
- C. Xavier: C-Language and Numerical Methods, New Age International.

Lesson Plan for Course: B.Sc (G) Sem-III (GE) Code: MTMHGEC03T Credit: 6

Course Name: Real Analysis

• Course coordinator: Dr. Pintu Debnath

Course Outcomes:

CO-1. Understand some properties of sets in \mathbb{R} .

CO-2. Able to solve problems related with real sequence.

CO-3. Learn about infinite series and their tests of convergence.

CO-4. To understand about Sequences and series of functions.

CO-5. Able to find radius of convergence of power series.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Finite and infinite sets, examples of countable	BS	03	Theoretical – 02
	and uncountable sets, Real line, bounded			Tutorial - 01
	sets, suprema and infima.			
	Real Sequence, Bounded sequence, Cauchy	SM	02	Theoretical – 01
	convergence criterion for sequences.			Tutorial - 01
	Infinite series. Cauchy convergence criterion	PD	03	Theoretical – 01
	for series. Positive term series, geometric series.			Tutorial - 02
Oct	Completeness property of R, Archimedean	BS	03	Theoretical – 02
	property of R, intervals, Concept of cluster			Tutorial - 01
	points and statement of Bolzano-Weierstrass			
	theorem.	CM	06	The sure (1 = 1 = 0.4
	Cauchy's theorem on limits, order	SM	06	Theoretical – 04 Tutorial - 02
	preservation and squeeze theorem.			Tutoriai - 02
	Monotone sequences and their convergence			
	(monotone convergence theorem without			
	proof). Comparison test, convergence of p-series,	PD	04	Theoretical – 02
		ΓD	04	Tutorial - 02
	Root test, Ratio test. 1 st Internal A	accamant		Tutoriai - 02
Nov	Power series.	BS	02	Theoretical – 02
1101	Tower series.	ЪЗ	02	Tutorial - 00
	Sequences and series of functions,	SM	02	Theoretical – 01
	Pointwise and uniform convergence.	21.1	02	Tutorial - 01
	Infinite series: Alternating series, Leibnitz's	PD	03	Theoretical – 02
	test (Tests of Convergence without proof).	1 D	03	Tutorial - 01
Dec	Radius of convergence Power series.	BS	05	Theoretical – 04
DCC	Radius of convergence I ower series.	ЪЗ	03	Tutorial - 01
	M_n -test, M-test. Statements of the results	SM	06	Theoretical – 04
	about uniform convergence and integrability	5111		Tutorial - 02
	and differentiability of functions.			
	<i>Infinite series</i> : Definition and examples of	PD	04	Theoretical – 03
	absolute and conditional convergence.			Tutorial - 01
	2 nd Internal A	Assessment		
Jan	Revision	BS	02	Theoretical – 06
		SM	02	Tutorial - 00
		PD	02	
	End Semester	Examinat <u>io</u>	n	
	Assessment: Internal Assessment &		Total: 49	Theoretical – 34
	Assignment		Hrs	Tutorial - 15
Rooks:				

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India. 2019.
- ➤ K.A. Ross, *Elementary Analysis- The Theory of Calculus Series-* Undergraduate Texts in Mathematics, Springer Verlag, 2003.

Lesson Plan for Course: B.Sc (G) Sem-III (GE) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Dr. Biswajit Sarkar
- Course Outcomes:
 - CO-1. Learn high-level programming languages.
 - CO-2. Able to construct flowchart.
 - CO-3. To know about some arithmetic operators and logical operators.
 - CO-4. Able to use for loop, while loop and do-while loop in C-programming.
 - CO-5. Capable to write programming for finding out maximum, minimum of a given set of numbers.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Unit-1: Basics of Computer Programming: Definition, Requirement of programming language, Machine language, high-level programming languages, machine code of a program: compilation process, Problem solving approaches: algorithm and flowchart.	SM	03	Theoretical-01 Tutorial-02
Oct	Unit-2: Fundamentals of Programming: Built in Data Types: int, float, double, char; Constants and Variables; first program: printf(), scanf(), compilation etc., keywords, Arithmetic operators: precedence and associativity, Assignment Statements: post & pre increment/decrement, logical operators: and, or, not.	SM	04	Theoretical-02 Tutorial-02
Nov	Unit-3: Statements: Relational operators, if-else statement.	SM	03	Theoretical-01 Tutorial-02
Dec	Unit-3: Statements: Iterative Statements: for loop, while loop and do-while loop; controlling loop execution: break and continue, nested loop. End Semester Examin	SM nation (By I	04 Department)	Theoretical-02 Tutorial-02
	Assessment: Assignment		Total: 14 Hrs	Theoretical-06 Tutorial-08

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015.
- C. Xavier: C-Language and Numerical Methods, New Age International.

Lesson Plan for Course: B.Sc (G) Sem-V (DSC) Code: MTMGDSE01T Credit: 6

- Course Name: Matrices
- Course coordinator: Dr. Sudip Mondal
- Course Outcomes:
 - CO-1. To compute and interpret eigen values and eigen vectors linear transformations.
 - CO-2. To calculate rank of matrices.
 - CO-3. Able to solve linear homogeneous and non-homogeneous equations.
 - CO-4. Reduce to diagonal form upto matrices of order 3.
 - CO-5. To compute matrix inverses using elementary row operations.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Unit-1: \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 as vector spaces over	PD	02	Theoretical – 01
	R. Standard basis for each of \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 .			Tutorial - 01
	Unit-2: Translation, Dilation. Rotation,	BS	05	Theoretical – 04
	Reflection in a point.			Tutorial - 01
	Unit-3: Types of matrices.	SM	02	Theoretical – 01
				Tutorial - 01
Oct	Unit-1: Concept of Linear Independence	PD	04	Theoretical – 02
	and examples of different bases.			Tutorial - 02
	Subspaces of \mathbb{R}^2 , \mathbb{R}^3 .			
	Unit-2: Reflection in a line and plane.	BS	04	Theoretical – 03
	Matrix form of basic geometric			Tutorial - 01
	transformations.			
	Unit-3: Rank of a matrix, Invariance of	SM	04	Theoretical – 03
	rank under elementary transformations.			Tutorial - 01
	Reduction to normal form.			
	1 st Interna	al Assessmen	nt	
Nov	Unit-2: Interpretation of eigen values and	PD	03	Theoretical – 02
	eigen vectors for geometric			Tutorial - 01
	transformations.			
	Unit-3: Solutions of linear homogeneous	SM	02	Theoretical – 01
	and non-homogeneous equations with			Tutorial - 01
	number of equations and unknowns up to			
	four.			
	Unit-4: Computation of matrix inverses	BS	04	Theoretical – 03
	using elementary row operations. Rank of			Tutorial - 01
	matrix.			
Dec	Unit-2: Eigen spaces as invariant	PD	04	Theoretical – 03
	subspaces.			Tutorial - 01
	Unit-4: Matrices in diagonal form.	SM	06	Theoretical – 04
	Reduction to diagonal form upto matrices			Tutorial - 02
	of order 3.			
	Unit-4: Solutions of a system of linear	BS	09	Theoretical – 08
	equations using matrices. Illustrative			Tutorial - 01
	examples of above concepts from			
	Geometry, Physics, Chemistry,			
	Combinatorics and Statistics.			
		al Assessmer		
Jan	Revision	PD	02	Theoretical – 06
		BS	02	Tutorial - 00
		SM	02	
	End Semest	er Examina		
	Assessment: Internal Assessment &		Total: 55	Theoretical –41
	Assignment		Hrs	Tutorial - 14

- A.I. Kostrikin, *Introduction to Algebra*, Springer Verlag, 1984.
- S. H. Friedberg, A. L. Insel and L. E. Spence, *Linear Algebra*, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- ➤ Richard Bronson, Theory and Problems of Matrix Operations, Tata McGraw Hill, 1989.
- ➤ S. K. MAPA, Higher Algebra, Sarat Book Distributor, India. 2019.

Lesson Plan for Course: B.Sc (G) Sem-V (DSC) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Dr. Sudip Mondal
- Course Outcomes:
 - CO-1. To understand arrays and multi-dimensional arrays.
 - CO-2. Able to use arrays and multi-dimensional arrays in C-programming.
 - CO-3. To understand about functions.
 - CO-4. Capable to write programming by using functions.
 - CO-5. Able to write programming C languages like n!, nCr, etc.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Unit-4: Arrays:	SM	02	Theoretical-01
	Definition & requirement, declaration &			Tutorial-01
	initialization, indexing.			
Oct	Unit-4: Arrays:	SM	04	Theoretical-02
	One dimensional array: finding maximum,			Tutorial-02
	minimum, Simple sorting and searching.			
	Unit-5: Multi-dimensional arrays:			
	Matrix Manipulations (Addition)			
Nov	Unit-5: Multi-dimensional arrays:	SM	03	Theoretical-01
	Matrix Manipulations (Multiplication,			Tutorial-02
	Transpose), Arrays and Pointers, Memory			
	allocation and deallocation: <i>malloc()</i> and			
	free() functions.			
Dec	Unit-6: Functions:	SM	04	Theoretical-02
	Why?, How to declare, define and invoke a			Tutorial-02
	function, Variables' scope, local& global			
	variables and function parameters,			
	Pointers, arrays as function parameters,			
	return statement, Header files and their			
	role. Illustrate different examples like			
	swapping values, compute n!, nCr, find			
	max/min from a list of elements, sort a set			
	of numbers, matrix addition/ multiplication			
	etc.	ation (DI) an auton aut	
	End Semester Examir	iation (By I	_	
	Assessment: Assignment		Total: 13	Theoretical-06
			Hrs	Tutorial-07

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015.
- C. Xavier: C-Language and Numerical Methods, New Age International.